星期三, 十月 17, 2007

密码大事记

失去密码,我都不知道自己是谁!”
在现代人的生活中,银行和互联网是密码使用最多的地方.邮箱、MSN、QQ、工资卡、信用卡、借书卡、电脑开机密码、网上银行账号、购物网站账号……屈指算来,几乎每个人的名字背后都有一串的密码.

没有密码就不知道自己是谁,没有密码就无法生活.被机器“拷问”密码成为现代人的尴尬经历:面红耳赤,急出一身汗来,和自己较劲半天想出密码,诚惶诚恐地等待机器的验证.猜对了,一颗悬着的心落到肚子里;猜错了,还得硬着头皮重来……

如果密码的主人遭遇不幸,那么相关的内容也将随着密码的不得而知而消失吗?在风靡一时的《达芬奇密码》中,聪明的孙女凭着密码学、数学、宗教、文化和艺术等方面的知识,破解了意外死去的祖父留下的密码,揭开了一个惊世秘密.

小说、电影中的种种情节,在平常人看来未免太过传奇.在美国,一名士兵的家人希望得到自己阵亡儿子的电子信箱密码,以整理他的信件.但雅虎公司以隐私和保密权为由一直拒不提供密码,直到密歇根州法院判决后才开放了信箱.

在阿根廷这种情况要好一些.阿根廷有关个人资料保护的法律规定:死者直系家属有权获得死者邮箱的密码,但需要出示他们与死者的关系证明.

如果有人想得到去世亲人的电子信箱密码,网络公司是否应该抛开保护客户隐私和保密协议而提供密码呢?如果网络公司认为需要过一段时间才能对外开放死者信箱,而继承人认为信箱中有不能延误的重要信息又该怎么办?这些在法律上缺少明文规定的问题成为密码带来的困境.

密码到底是技术带给人们的福音?还是让人们成为囚徒的“罪魁祸首”?平常的生活中,人们怎么设置密码?密码的过去和将来又有怎样的故事?和密码密切相关的虚拟财产能否被继承?

让我们一起走进密码的世界…… 最早的密码

公元前5世纪,古希腊斯巴达出现原始的密码器,用一条带子缠绕在一根木棍上,沿木棍纵轴方向写好明文,解下来的带子上就只有杂乱无章的密文字母.解密者只需找到相同直径的木棍,再把带子缠上去,沿木棍纵轴方向即可读出有意义的明文.这是最早的换位密码术.

密码的明天

边凯

无法破译的量子密码,将达到“绝对安全”.这个令人期待的明天,又将何时到来?

密码可以说是人类和自己进行的一场博弈,随着科技的发展,这场博弈也在逐渐升级.公 元前2000年,古埃及就有了密码,包括在《达芬奇密码》当中使用的希伯来密码,也是著名的古代密码之一.中国也是很早就使用了密码,在公元前十一世纪的 周武王时代就已经使用了一种“阴符”系统,用不同的长度来表示战争的结果.

公元前8世纪到公元前6世纪,斯巴达人也发明了一种命名为“Skytale”的密 码,它是通过一个带状物,比如纸带、羊皮带或是皮革类的东西,呈螺旋形紧紧地缠在一根权杖或木棍上,之后再沿着棍子的纵轴书写文字,在这条带状物解开后, 上面的文字将杂乱无章,收信人只需用一根同样直径的棍子(这两根同样直径的棍子可以是在出征前把一根棍子锯断后得到,之后将领和“情报部门”各拿一半.) 重复这个过程,就可以看到明文,这还是人类历史上最早的加密器械.

目前,有一门专门的学科——保密学,其研究的是改变消息和信号的形式,以隐蔽和复现其含义的规律,而在保密学中着重研究消息的变形及其合法复现的学科称为密码学.

经过两千多年的发展,现代密码学所采用的加密方法通常是用一定的数学计算操作来改变原始信息.这种改变信息的方法是密钥,掌握了密钥就可以将消息复原回来.

从理论上来说,传统的数学计算加密方法都是可以破译的,再复杂的数学密钥也可以找到 规律.第一台现代计算机的诞生,就是为了破解复杂的数学密码.随着计算机的飞速发展,破译数学密码的难度也逐渐降低.以前需要很久时间才能破译出来的密 码,随着计算机处理速度的提升,时间也在成倍缩短.
传统密码都会失效?

现在密码的原理是让发送者与接收者共同拥有一把钥匙,并保证不会外流,通常用一种称为“公钥加密”(public-key cryptography)的方法发送“秘密钥匙”(简称密钥或私钥),对传送的信息加密或解密.

清华大学物理系教授、博士生导师龙桂鲁是量子计算机和量子密码领域的专家.根据他的介绍:“现在许多传统密码都是采用单向函数的方式,即‘从一侧推导出另一侧非常容易,反之则很难’的原理来实现的”.

例如有些是应用了因数分解或其它困难的数学原理,在目前互联网上比较常用的RSA密码算法,就是应用因数分解的原理.因为要计算两个大质数的乘积很容易,但要将乘积分解回质数却极为困难,这使得密码很难被破解.

例如在发送与接收者之间传递的秘密信息,是以“公开钥匙”(简称公钥)加密,这个公 钥是一个很大的数,例如408508091(实际上用的数会远大于此).数据只能以接收者握有的密钥解开,这把密钥是公钥的两个因素,而在这个例子里就是 18313与22307.对于传统计算机而言,想要通过乘积逆向获得这两个质数非常困难.

1994年美国贝尔实验室的Peter W. Shor证明:运用量子计算机能有效地进行大数的因式分解.这意味着以大数因式分解算法为依据的电子银行、网络等领域的RSA公开密钥密码体系在量子计算 机面前不堪一击,几年后,Grover提出“量子搜寻算法”,可以破译DES密码体系.这些算法的出现,使传统密码领域感到了前所未有的挑战.

英国布里斯托大学电子及电机工程系教授瑞若堤说:“如果量子计算机成真,一切都会不一样.”

有专家表示,量子计算机的计算速度可提高10亿倍,1个400位长的数分解成质数乘积,如果采用巨型机需10亿年,而用量子计算机只要一年便可得出结果.



绝对安全的量子密码

未来,量子计算机的出现虽然会对传统密码产生颠覆,但是量子信息学也生成了一种理论上无法破解的密码——量子密码.

相比目前还没有实际出现的量子计算机而言,量子密码的实现更为简单,目前已经出现了一些试用的案例.


量子密码和传统密码的差别在于,即使有了量子计算机,量子密码仍旧无法破译.之所以能有这样的特性,是因为它使用了量子状态作为密钥,具有不可复制性,因而更无破译的可能,可以达到“绝对的安全”.

这种模式在传递量子钥匙分配的时候,首先是发出一系列的单光子,光子的偏振状态随机地制备在垂直或平行方向,或者对角方向及斜对角方向.可以利用光子的偏振方向进行编码,例如可以规定水平方向和对角方向代表0,而垂直和斜对角方向表示1.

密码发送者制备光子的偏振状态,使得其偏振方向随机地处在四种偏振方向的一个,然后送出光子,接收者也随机决定用水平-垂直模式或者对角-斜对角模式的偏振测量仪器之一来测量光子的偏振方向.

根据量子物理中的海森堡测不准原理,接收者只有在选取的测量仪器的模式与发送者的模式相同的时候,得到的结果才和发送者的结果一样,否则采用了不同的模式就会得到不同的结果.

传送后,发送方和接受方会进行非加密的联络,接收方告诉发送方它是采用哪种模式接收的光子,发送方也会告诉接收方哪些模式的测量方式和他是一致的,进而让接收方删除掉采用不同的模式接收的光子,而相同模式接收的光子的偏振方向的编码便成为了钥匙,用以对信息加密或解密.

如果有人想在信息的发送方和接收方之间截获这道光子流,获取其中的信息,由于海森堡 原理的关系,窃听者的行为就会被发现.首先基于“单量子不可复制定理”,在不知道量子状态的情况下复制单个量子是不可能的.窃听者如果通过测量窃听,则当 测量仪器的模式与通信双发使用的模式不同时,测量必然改变量子的状态.

这样即使窃听者将依照测到的结果重新传给接收者,就一定会产生误差,发送者和接收者可以选择性地比较一些位,以确定误码率的大小,来检测是否出现了窃听者.

牛津大学量子计算中心主任艾克教授接受访问时说:“只要量子电脑一发明,精密的传统密码立刻会遭破解,但是‘量子密码’除了传统电脑破解不到,连量子计算机也破解不了.”

现在艾克教授已经成为了美国军队的咨询顾问,同时也为欧美许多大银行提供技术支持.

艾克说:“我是按量子物理定律来为客户设计密码,我对量子物理定律没有影响力.我只能去发现它、研究它、了解它,却不能改变它.所以当我完成了一套量子密码后,也已无法破解它了.”

目前为大银行设计量子密码的工作已进入试验阶段,他说:”银行家们都希望赶在量子电脑面世前,准备好这套无法被量子电脑破解的密码.”

现在的密码还能用多久?

我们现在所使用的密码还能用多久?龙桂鲁认为:“这要看量子计算机什么时候真正问世.”

现在有许多加密文件的有效期长达几十年,甚至上百年,如果真像有些科学家所预言的,量子计算机在未来几年就会出现的话,现在就要考虑对这些加密方式进行改进了.以防止在量子计算机出现之后,造成重要信息的泄密.

2007年2月13日,加拿大D-Wave Systems对外公布了量子计算机开发蓝图,并对外公布了成功开发出使用16个量子位,可用于商业用途的量子计算机.并且宣布在2007年底会增加到 32量子位,2008年第二季度到512量子位,2008年底增加到1024量子位.

这个消息一经宣布,在业界就产生了巨大的震动.由于他们没有公布技术细节,各种评 论都有,有人认为这是商业炒作,有人认为可能是真实的,需要严肃对待.“无论如何,当量子位达到512位的时候,这一消息的真实性立刻就会得到验证,因为 在那个时候,该台计算机的运算能力已经超过了目前所应用的最快的计算机.”龙桂鲁认为:“如果他们的宣布属实能够达到上百个量子位,那么量子计算机的时代 就真的来临了.”

没有评论: